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The squeezing spectrum

e Squeezed light can help to increase the secure communication distance and/or key rate | o The power spectrum density of the quadrature’s quantum noise (squeezing spectrum): e Pump fields for both OPOs are assumed to be classical and not shown in the scheme.
for continuous-variable quantum key distribution (CV-QKD). o / e From the control theory perspective, OPO1 is considered to be the plant and OPQO2 the
e High-rate CV-QKD requires high-bandwidth squeezing spectrum (i.e., strong squeezing Piw, 0) = 1+/ dw (: Xi(w, 0), Xi(w', 0):), (11) (quantum) controller.
0 — 0
at frequencies of ~ 100 MHz or even ~ 1 GHz). I . , _ e Each OPO cavity has a fictitious third mirror to model intracavity losses.
o Squeezed light is also a fundamental pre-requisite for generation of entanglement in CV Yvhere Xi(w, 0) = aout,.z-(w)e. i ao‘lt’i<_w)e 's the quadrature of the 7th OUtPUt i e Beamsplitters B1 and B2 represent the light diverted to lock the cavities as well as
quantum repeaters and CV cluster-state (measurement-based) quantum computation. In S5 (FEEUENEy Clemei, ¢ 5 B2 Wemeeyma Fess, £3 cemotes i meme) e o losses in optical transmission lines between the OPOs. Beamsplitter B3 represents
boson operators, and (z,y) = (zy) — () (y). losses in the output transmission line and detection inefficiencies
ST if i b , _ _ _ e Using the (S, L, H) model of the CQFN, we obtain: . . . L |
e The fundamental optical system for generation of single-mode/two-mode squeezed light g \ e Phase shifters P1 and P2 are inserted into transmission lines between the OPOs to
is degenerate/non-degenerate optical parametric oscillator (OPO). Pi(w,0) = 14+ Ni(w) + Ni(—w) + Mi(w)e™ + M;(w) e, (12)  manipulate the interference underlying the CQF control.
' : 1t : 0 o e [aking into account the feedback loop between the plant and controller, the CQFN has
e More gene.rally, we con5|d§r a network of. coupled linear and bilinear optical elements Ni(w) = dw,@ium(—wl)aoum(ww _ Z ‘Z;r(w) 27 (13) g p ; - P ] e
such as mirrors, beam-splitters, phase-shifters, lasers, and OPOs. . ) ! — J seven Input port.s, seven output ports, and two cavity modes (n =7, m = 2).
e The idea is to use such a coherent quantum feedback network (CQFN) to generate the 0 " o With &, = |&,|er and &. = |¢|e™, there is a total of 17 real parameters.
output light field with a favorable squeezing spectrum. M;(w) = / A (ot 5(w) Gous () = Z ZZE(W)Z{;(_W)- (14), e The relationship between leakage rate and power transmittance of a mirror:
e The objective is to maximize the degree of squeezing at a chosen frequency (or a range - =1 ki = cT;/(2leg), i=1,2,3, (17)
of frequencies) by searching over the space of model parameters with experimentally e We are only interested in the squeezing spectrum of the field at one of the output ports . . . . .
: . . where T; is the power transmittance of the ith mirror (R; = 1 — T; is the power
motivated bounds. (designated as i = 1): P(w,0) = P1(w, 0). . . . . .
: L _ _ _ _ reflectance), c is the speed of light, and /. is the effective cavity length.
The (S, L, H) model of an optical CQFN e The squeezing figure of merit measured in decibels is . . .
— e The total leakage rate (including losses) from the plant and controller cavities:
o Let.@ be the ngmber of the netvyork S mput/outptft ports and m be the number of O(w, ) = 10log,, P(w, 6). (15) Yo = Rt - Hip - e and Ve = Kol - Fep + Feo.
cavities (assuming one internal field mode per cavity). _ o _ .
| . « The maximum and minimum of P(w, ) as a function of , P*(w) = maxy P(w,0) | The scaled pump amplitude for the plant and controller OPOs
e Let a, a;,, and a,,; denote, respectively, vectors of boson annihilation operators for the - . ’ L . ’
cavity modes, input fields, and output fields and P~ (w) = ming P(w, @), are spectra of the quantum noise in anti-squeezed and 2 = 20| /7 = \/P P o= 2E] /e = \/P P (18)
' - ' | - - squeezed quadrature, respectively. The corresponding logarithmic spectral measures of P PIP P/ =Pty e e o= G
a=|[a,...,an , a@n=|[an1, -, qnnl s Bout = |[Gout1,--->doutn] - (1)|  anti-squeezing and squeezing: QF(w) = 10log,, P*(w). where P is the OPO pump power and Py, is its threshold value.
e The CQFN is fully described by the (S, L, H) model, which includes: o Using Eq. (12), we find: o The QNET package (developed by Hideo Mabuchi's group at Stanford University) is
S is an n X n matrix that describes the scattering of external fields; PEwW) = 1+ N(W) + N(—w) + 2 M (w)| (16) used to derive the (S, L, H) model of the CQFN.
L i§ an n X 1.mat.rix that descri_bes the (?oupling.of cavity _modes and external fields; The model of a network of two coupted OPOS Numerical optimization results for the squeezing spectrum
H is the Hamiltonian that describes the intracavity dynamics. s A schematic depiction of the CQFN of two coupled OPOs: e Optimized squeezing spectra for different values of intracavity loss:
e The quantum Langevin equations for the cavity mode operators {a,(t)} are (A = 1) P P ' ._Squeezing spectrum optimized at 10 MHz . Squeezing spectrum optimized at 100 MHz
day loss (< < vac
- - — 9 — out7 in7
7 Z[ag, H] + EL[ag] +I'y, ¢=1,...,m, (2) o AT s ol
where L; is the Lindblad superoperator and I'; is the noise operator. OPO2 _al
e The generalized boundary condition for the network is Int ut2 )
vac 3 PR = e
Aoyt — Sain == L. (3) ock (34 ks %E)E é\j B g
= eta=theta : 8_ -8
e The elements of L are linear in annihilation operators of the cavity modes: ous AS gshr:ﬂcer e Dtht thet 2|'>S7\O|'u>t2 55 ok 9 8
L - Ka, (4) = [ o merseniovs SR o S S
= kappa_3=kappa_c_3
and the Hamiltonian has the bllln]Lear forrr'1:T A ey SR 46 L “12 — toss= ;‘f | — toss: ;f |
_ { { — 5 out6 in6 — Loss = 2% — Loss = 2%
H —a Qa _|_ §a Wa R §a W a7 (5) D y m/| Oz\i/lmz p D Out34><7ln3 phi=phi_2 O g —14 — Loss = 1% || —14} — Loss = 1% | |
where al = [CLJ{ Ce ajn] and a* = af. Ioc:koutZ\l oue A \|theta=theta 1 \lin2 o OPO1 °Y ° %0 100 150 200 0 %0 100 150 290
’ ’ E - = w/2mw (MHz) w/2mw (MHz)
e With such LL and H, the quantum Langevin equations (2) take the matrix form: . it ~
da vac % 4 "/é\-/\" e Optimized squeezing spectra for different values of OPO pump power:
E — Va + Wai + Yam, (6) out ! o_Squeezing spectrum optimized at 10 MHz 0. Squeezing spectrum optimized at 100 MHz
Plani . theta=theta_3 §<7 out2
Where V = —%KTK — ’LQ and Y = —KTS. k:apphpa__1_=pkappa_p_1 vac (3 '1> D,}\D '1> £ loss
kappa_2=kappa_p_2 in4 In2 *7 e out4
The model of CQFN in the frequency domain device=OPO_CQFN._1 A 2 & N5
e Boson operators in the frequency domain: module-name=OPO_CQFN_f i @
0 o0 E
b(t) = 1 / dwb(w)e ™t bi(t) = 1 / dew bl (—w)e™™t (| Parameters of the CQFN of two coupled OPOs: g
V2T J—c0 V2T J—cc Parameter Type Description S
where b(t) stands for any element of a(t), ay,(¢), and agu(t). Kpl Positive Leakage rate for the left mirror of the plant OPO cavity %
e The double-length column vectors notation: Kp2 Positive Leakage rate for the right mirror of the plant OPO cavity =
y b(w) Kp3 Positive Leakage rate for losses in the plant OPO cavity
b(w)—[ ] (8) Real  F detuning of the plant OPO cavit
bi—w) | W ea requency detuning of the plan cavity
_ (=) S Complex Pump amplitude of the plant OPO
where b(w) st?nds for either of a(w) ain(w), an.d Aout(W). el Positive Leakage rate for the left mirror of the controller OPO cavity 0 E0 w/%l‘zimz) L 2000 %0 w/%“é‘i\mz) 150 200
e The quantum input-output relations in the matrix form: Ko Positive Leakage rate for the right mirror of the controller OPO cavit
g g y
Aout(w) = Z(w)éin(w), (9) K3 Positive Leakage rate for losses in the controller OPO cavity Conclusions and future directions
here Z(w) is th " 0 - finction: We Real Frequency detuning of the controller OPO cavity e The (S, L, H) model makes it possible to evaluate the squeezing spectrum of the
where Z(w) is the network’s transfer-matrix function: £ Complex Pump amplitude of the controller OPO output field from the CQFN of two OPOs for various values of experimental parameters.
Z.(w) = %_(W) . %+(W) | = [I% n R(A Ty, 'K S, (10) b1 Real Phase shift of the first phase shifter o We use Sequential Least Squares Programming (SLSQP) to maximize squeezing at a
Z"(—w) Z"(—w) 0y Real Phase shift of the second phase shifter chosen frequency by searching over the space of model parameters.
Here, A = A(V, W), K = A(K,0), S = A(S, 0), and we use the notation: th Real Rotation angle of the first beamsplitter e Since SLSQP is a local (deterministic) algorithm, it can be trapped at a local maximum.
A B % Real Rotat?on angle of the se.cond beams.plitter e We are working on using global (stochastic) algorithms such as Differential Evolution,
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